E3, 4 x E2 - 34Mb/s
E4, 4 x E3 - 140Mb/s
E5, 4 x E4 - 565Mb/s
Inserting and dropping out traffic from different customers can only happen at the level at which the customer is receiving the traffic. This means that if a 140Mb/s fibre is near a particular site and a new customer requires a 2Mb/s link, then a whole set of demultiplexers are required to do this.
Synchronous Digital Hierarchy (SDH)
Management is very inflexible in PDH, so SDH was developed. Synchronous Digital Hierarchy (SDH) originates from Synchronous Optical Network (SONET) in the US. It includes capabilities for bandwidth on demand and is also made up of multiples of E1. STM-1 (155Mb/s) is 63 x E1, STM-4 (622Mb/s) is 4 x STM-1 and STM-16 (2.5Gb/s) is 4 x STM-4.
The benefits of SDH are:
- Different interfaces or different bandwidths can connect (G708, G781).
- Network topologies are more flexible.
- There is flexibility for growth.
- The optical interface is standard (G957).
- Network Management is easier to perform (G774 and G784).
- Existing PDH can interface into SDH. There are three G transmission series recommendations
that are very important:
G.707 - SDH Bit Rates
G.708 - The SDH Network Node Interface.
G.709 - Synchronous Multiplexing structure.
With the exception of 8Mb/s, different PDH outputs are 'mapped' into Containers (C) and then into fixed size Virtual Containers (VC). When the VC is aligned in the Tributary Unit (TU) a Pointer is added which indicates the phase of the particular VC. TU's are then grouped, via Time Division Multiplexing (TDM), into Tributary Unit Groups (TUG).
The TUGs are collated into Administrative Units (AU) via more VCs where more pointers are added (these being fixed relative to the frame). The VCs and the pointers are incorporated into the section overhead of the Synchronous Transport Module (STM). One AU forms an STM-1, 4 AUs form an STM-4. You can also get STM-16 and STM-64.
Let us follow a 2Mb/s pipe through the hierarchy.
The 2Mb/s PDH first enters a container C12 which compensates for the varying speeds via the use of stuff bits (R). Stuff opportunities are identified by S1 and S2 and these are controlled by the control bits C1 and C2 respectively. If the C bits are are 0s then the corresponding S bits contain data and if the C bits are 1s then the S bits are not defined. In the diagram below, O represents Overhead channel bits and I represents Information bits.
To create the VC12 a Path Overhead (POH) is added. The POH uses Bit Interleaved Parity (BIP) to monitor errors. In addition, there are fault indicators, Far End Block Error (FEBE), Remote Fail Indicator (RFI) and Far End Receive Failure (FERF). The Signal Label is normally set at 2 to indicate asynchronous data.
A pointer is added to the VC12 which defines the phase alignment of the VC12 and this changes during transmission. Phase variation can be due to Jitter (from regeneration and multiplexing equipment) and Wander (temperature differences within the transmission media). VC12s created by different multiplexers may not be synchronous so the TU adds a pointer at a fixed position within the TU. The value of the pointer indicates the start of the VC12. If the phase of the VC12 changes then the value of the pointer changes such that if data is running faster than the TU then the pointer value is increased and if the data speed is slower then the pointer value is decreased. This difference in speed can be up to one byte per frame in SDH.
The following diagram illustrates three TU12s entering a TUG2 at three different times with the VC12 pointers indicating where the POH is for each:
2 komentar:
Hi, Mr.Irwin, I'm Denis.
I'm Interest with ur content, coz it's helpful for my KERJA PRAKTEK. Thanks a lot for SDH content that you publication.
What test equipment can test this SDH?what parameter can we see...
Posting Komentar